韩信点兵数学题(韩信点兵那算术式怎么算的)

2顿吃个蛋挞 古诗鉴赏 22

数学问题::有一个数,除以7余2,除以8余4,除以9余3,这个数至少是多少

这个是中国历史上著名的韩信点兵问题,也叫孙子问题(物不知数).固定的解法是这样的:【解】先随便求一个能被7和8整除且除以9余3的数.有固定的方法:56m-9n=3 (计算前要先把式子两边约一下,这时候没有公因子,不用约)两个系数56和9,56大,就让56除以9,商6余2。

韩信点兵:在一千多年前的《孙子算经》中,有这样一道算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”按照今天的话来说:一个数除以3余2,除以5余3,除以7余2,求这个数。这样的问题,也有人称为“韩信点兵”。

在数学上,如果a和b除以正整数m后的余数相同,则称a、b对于模m同余。

韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人…….刘邦茫然而不知其数.我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?

韩信点兵的算法

算两两数之间的能整除数 2.算三个数的能整除数 3.用1中的三个整除数之和减去2中的整除数之差(有时候是倍数)4计算结果即可 韩信带1500名兵士打仗,战死四五百人,站3人一排,多出2人;站5人一排,多出4人;站7人一排,多出6人.韩信马上说出人数:1049 如多一人。

第一道是韩信在战争开始前,下了三道军令:第一道、让士兵3人为一排多出2人;第二道,而士兵5人站一排多出4人;第三道、让士兵7人一排多出6个人;请问韩信的军队现在还有多少人?

这就是“韩信点兵”的计算方法,它的意思是:凡是用3个一数剩下的余数,将它用70去乘(因为70是5与7的倍数,而又是以3去除余1的数);5个一数剩下的余数,将它用21去乘(因为21是3与7的倍数,又是以5去除余1的数);7个一数剩下的余数,将它用15去乘(因为15是3与5的倍数。

韩信让士兵排成3列纵队,余2人;排成5列纵队,余2人,排成7列纵队,余4人。已知士兵人数在300至400人之间,求这队士兵的人数。设共有A人,300

部队集合齐让士兵3--5--7报三数每余数再报告给便知道部队实际数缺席数种计算历史称鬼谷算隔墙算剪管术外则叫剩余定理用首诗概括问题解:三同行七十稀五树梅花廿枝七团圆月半除百零五便知意思第余数乘70第二余数乘21第三余数乘15三运算结加起再除105。

韩信点兵的计算公式源自古代中国《孙子算经》中的一个趣味算术问题。这道题以乘法口诀的形式描述:三人同行时,每数70人会剩余一人;五树梅花时,每数21人余下一人;七子团圆时,每数15人剩一人。

韩信点兵那算术式怎么算的

首先我先求117公倍数9945(注:117两两互质整数故其公倍数些数积)后再加39948()千前《孙算经》道算术题:今物知其数三三数剩二五五数剩三七七数剩二问物几何按照今说:数除3余2除5余3除7余2求数问题称韩信点兵.形类问题初等数论解同余式 ① 数除3余2除4余1问数除。

三人同行七十稀,五树梅花廿一枝,七子团圆正月半。

这个题目古数学上叫韩信点兵,绝不应该是一年级的题目。剩的那一个,再给补上两个,就够每猴4个了。

秦王暗点兵问题和韩信乱点兵问题,都是后人对物不知其数问题的一种故事化。 物不知其数问题出自一千六百年前我国古代数学名著《孙子算经》。原题为:"今有物不知其数,三三数之二,五五数之三,七七数之二,问物几何?" 这道题的意思是:有一批物品,不知道有几件。

题中r1=1,r2=2,r3=5,从而M1r1 M2r2 M3r3=-93,注意到2×5×7=70,所以被2除余1,被5除余2,被7除余的最小自然数是-93 70×2=47。如果LZ不明白什么是辗转相除法,自己去找点资料看看吧,很容易理解的。以上就是“韩信点兵”这类题目的一般做法。

一个数被3除余2,被5除余3,被7除余2,求该数 韩信点兵

汉高祖刘邦曾问大将韩信:“你看我能带多少兵?”韩信斜了刘邦一眼说:“你顶多能带十万兵吧!”汉高祖心中有三分不悦,心想:你竟敢小看我!“那你呢?”韩信傲气十足地说:“我呀,当然是多多益善啰!”刘邦心中又添了三分不高兴,勉强说:“将军如此大才,我很佩服.现在,我有一个小小的问题向将军请教,凭将军的大才,答起来一定不费吹灰之力的.”韩信满不在乎地说:“可以可以.”刘邦狡黠地一笑,传令叫来一小队士兵隔墙站队,刘邦发令:“每三人站成一排.”队站好后,小队长进来报告:“最后一排只有二人.”“刘邦又传令:“每五人站成一排.”小队长报告:“最后一排只有三人.”刘邦再传令:“每七人站成一排.”小队长报告:“最后一排只有二人.”刘邦转脸问韩信:“敢问将军,这队士兵有多少人?”韩信脱口而出:“二十三人.”刘邦大惊,心中的不快已增至十分,心想:“此人本事太大,我得想法找个岔子把他杀掉,免生后患.”一面则佯装笑脸夸了几句,并问:“你是怎样算的?”韩信说:“臣幼得黄石公传授《孙子算经》,这孙子乃鬼谷子的弟子,算经中载有此题之算法,口诀是:

三人同行七十稀,

五树梅花开一枝,

七子团圆正月半,

除百零五便得知.”

刘邦出的这道题,可用现代语言这样表述:

“一个正整数,被3除时余2,被5除时余3,被7除时余2,如果这数不超过100,求这个数.”

《孙子算经》中给出这类问题的解法:“三三数之剩二,则置一百四十;五五数之剩三,置六十三;七七数之剩二,置三十;并之得二百三十三,以二百一十减之,即得.凡三三数之剩一,则置七十;五五数之剩一,则置二十一;七七数之剩一,则置十五,一百六以上,以一百五减之,即得.”用现代语言说明这个解法就是:

首先找出能被5与7整除而被3除余1的数70,被3与7整除而被5除余1的数21,被3与5整除而被7除余1的数15.

所求数被3除余2,则取数70×2=140,140是被5与7整除而被3除余2的数.

所求数被5除余3,则取数21×3=63,63是被3与7整除而被5除余3的数.

所求数被7除余2,则取数15×2=30,30是被3与5整除而被7除余2的数.

又,140+63+30=233,由于63与30都能被3整除,故233与140这两数被3除的余数相同,都是余2,同理233与63这两数被5除的余数相同,都是3,233与30被7除的余数相同,都是2.所以233是满足题目要求的一个数.

而3、5、7的最小公倍数是105,故233加减105的整数倍后被3、5、7除的余数不会变,从而所得的数都能满足题目的要求.由于所求仅是一小队士兵的人数,这意味着人数不超过100,所以用233减去105的2倍得23即是所求.

这个算法在我国有许多名称,如“韩信点兵”,“鬼谷算”,“隔墙算”,“剪管术”,“神奇妙算”等等,题目与解法都载于我国古代重要的数学著作《孙子算经》中.一般认为这是三国或晋时的著作,比刘邦生活的年代要晚近五百年,算法口诀诗则载于明朝程大位的《算法统宗》,诗中数字隐含的口诀前面已经解释了.宋朝的数学家秦九韶把这个问题推广,并把解法称之为“大衍求一术”,这个解法传到西方后,被称为“孙子定理”或“中国剩余定理”.而韩信,则终于被刘邦的妻子吕后诛杀于未央宫.

请你试一试,用刚才的方法解下面这题:

一个数在200与400之间,它被3除余2,被7除余3,被8除余5,求该数.

(112×2+120×3+105×5+168k,取k=-5得该数为269.)

什么叫做“韩信点兵”?

韩信点兵是一个有趣的猜数游戏.如果你随便拿一把蚕豆(数目约在100粒左右),先3粒3粒地数,直到不满3粒时,把余数记下来;第二次再5粒5粒地数,最后把余数记下来;第三次是7粒一数,把余数记下来.然后根据每次的余数,就可以知道你原来拿了多少粒蚕豆了.不信的话,你还可以实地试验一下.例如,假如3粒一数余1粒,5粒一数余2粒,7粒一数余2粒,那么,原有蚕豆有多少粒呢?

这类题目看起来是很难计算的,可是我国有时候却流传着一种算法,综的名称也很多,宋朝周密叫它“鬼谷算”,又名“隔墙算”;杨辉叫它“剪管术”;而比较通行的名称是“韩信点兵”.最初记述这类算法的是一本名叫《孙子算经》的书,后来在宋朝经过数学家秦九韶的推广,又发现了一种算法,叫做“大衍求一术”.这在数学史上是极有名的问题,外国人一般把它称为“中国剩余定理”.至于它的算法,在《孙子算经》上就已经有了说明,而且后来还流传着这么一道歌诀:

三人同行七十稀,

五树梅花廿一枝,

七子团圆正半月,

除百零五便得知.

这就是韩信点兵的计算方法,它的意思是:凡是用3个一数剩下的余数,将它用70去乘(因为70是5与7的倍数,而又是以3去除余1的数);5个一数剩下的余数,将它用21去乘(因为21是3与7的倍数,又是以5去除余1的数);7个一数剩下的余数,将它用15去乘(因为15是3与5的倍数,又是以7去除余1的数),将这些数加起来,若超过105,就减掉105,如果剩下来的数目还是比105大,就再减去105,直到得数比105小为止.这样,所得的数就是原来的数了.根据这个道理,你可以很容易地把前面的五个题目列成算式:

1×70+2×21+2×15-105

=142-105

=37

因此,你可以知道,原来这一堆蚕豆有37粒.

1900年,德国大数学家大卫·希尔伯特归纳了当时世界上尚未解决的最困难的23个难题.后来,其中的第十问题在70年代被解决了,这是近代数学的五个重大成就.据证明人说,在解决问题的过程中,他是受到了“中国剩余定理”的启发的.

标签: 余数 韩信 点兵

抱歉,评论功能暂时关闭!